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Characteristic times of the removal of aerosols are evaluated for different processes of deposition. Gas flows 
in a containment in the presence of suspended particles of various concentrations have been analyzed. A 
mathematical model is suggested for describing the propagation and deposition of aerosols under the 

conditions of large-scale convection. 

Introduction. During severe accidents at electric power stations (EPS), large amounts of vapor, gas and 

radioactive substances, including aerosols, are released to the atmosphere of the protective envelope of the reactor 

(containment). For scientifically justified selection of filtering systems and evaluation of the radiative contamination 

of the area in the presence of leakage from the containment, the study of the process of the propagation of aerosols 

is of great importance. For selecting a model which would adequately describe the process of deposition of aerosol 

particles, it is advisable to carry out a qualitative analysis of the processes of propagation and sedimentation of 

aerosols. 
It should be noted that the majority of mathematical models used for analyzing the behavior of aerosols in 

severe accidents at EPS are based on the assumption of homogeneous composition of aerosols over the containment 

volume. They describe the process of deposition of aerosols in the presence of developed small-scale convection with 

sufficient accuracy (see, for example, [1 ]). At the same time these models turn out to be inapplicable for describing 

the behavior of aerosols on initiation of large-scale convection, which leads to redistribution of suspended particles 

between different parts of the containment. When describing the distribution of aerosols in a gas flow, it is necessary 

to self-consistently describe the gasdynamics of a gas mixture and the motion of suspended particles. 

We shall perform a qualitative analysis of the processes of propagation and deposition of aerosol particles, 

including cases where suspended particles are involved by the gas flow in the process of large-scale convection. 

1. Gravitational Sedimentation. The time required to establish a constant rate of deposition of particles can 

be determined by using the equation of motion 

4 
~tr3p~U~ = 6nvpgU~, (1) 

from which it follows that the time of establishment of Us = const is equal in order of magnitude to 

21~s r" (2) Tst ~ _ _  
9p~ v 

For the characteristic values of the quantities p s / p g - 1 0  3, r - 1 0  4 cm, v - 1 0  cm2/sec the time of estab- 

lishment amounts to 2.10 -5 sec. As will be seen from what follows, such times are rather small as compared with the 

lifetime of a particle in the containment atmosphere and, as a rule, are much smaller than the mean time of the path 

of the particles between collisions. This circumstance allows one to employ an approximation in which the velocity 
of the particles is regarded as constant during the entire residence time of a particle in the containment atmosphere. 

As a rule, the mean radius of a suspended particle does not exceed in order of magnitude several microns, which is 
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much higher than the mean free path at the pressure of the vapor-gas mixture P>__ 1 attn. In a free-molecular regime, 

when the particle radius is much smaller than the mean free path length of the molecules, the time of establishment 

of Us = const is equal in order of magnitude is equal to r s -  r/Cs where Cs is the speed of sound in a gas. 

The velocity of established motion in a gravity force field is equal in order of magnitude to 

U~--, 2p~ gr ~ 
9pg v 

For the above example Us = 0.2 �9 10 -2 cm/sec. 

2. Diffusional Precipitation. The characteristic rate of diffusional precipitation is 

D 
Ua . . . . . .  6~ 

The particle diffusion coefficient D = kTB can be estimated using the expression for the particle mobility 

B = U/F-(vpgr)-l:  

kT  
U d ~ - ,  , 

vp~r6d 

For 6d --10-2 cm, v -4" 10 -1 cm2/sec, pg -10 -3 g/cm a and r -1/~m the rate of diffusional precipitation is 

equal in order of magnitude to Ud N5.10 -4 cm/sec. 

It should be noted that the rate of diffusional precipitation of aerosols is inversely proportional to the particle 
N ~ r *  radius (Ud l / r ) .  Since for gravitational sedimentation Us r 2, then, starting from a certain size r > (where r* 

corresponds to the condition Us ( r )  -- Uo ( r ) ) ,  gravitational sedimentation is the basic process of removal of aerosols. 

This statement is valid only in the case where the height and diameter of the containment base coincide in order of 

magnitude. Otherwise r* should be determined from the condition Us(r*)A -- Ud(r*)At, where A is the area of the 

horizontal projections of all the containment areas; A t is the total area of the internal surface of the containment. In 

order of magnitude the particle size r is determined by the following expression: 

r* kT  ~/a 
p~6dg  , 

In the containment, under conditions characteristic of severe accidents at an EPS, r* - 0.3/~m, and thus, to 

adequately describe the process of removal of particles of size r - 0.1-1 pm, it is necessary to take into account both 

gravitational and diffusional (Brownian) sedimentation. Fine particles of size r << r precipitate on the walls due to 

diffusion, whereas large particles (r >> r*) settle on horizontal and inclined surfaces due to gravitational 

sedimentation. 
We shall evaluate the time in which an aerosol is removed from the containment due to its deposition on the 

walls. For a containment with the characteristic dimension L ~ 10 m and particles with a mean radius of about 1/~m 

the time of removal ~dep is 

"rd~p --~ L/(U~ + Ud) ~ 105sec"~25 h. 

3. Coagulation of the Particles. Collisions of the particles that:lead to coagulation of the latter considerably 

alter the function of the size distribution of the particles, which influences the deposition of aerosols. Using the 

expressions 
K~ (r~, rh) = 4.nkT (r I q- rh) (B (,~) -F B (r~)), 

1(~ (r~, rn) = ~e~ (rt -I- ru) '~ IU, (ri) - -  U, (O,)l 

for collision frequencies in Brownian Kb and gravitational Kg coagulation, it i s  possible to obtain the following 

estimates: 
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Kb kT K~ 2 gr 2 p~ Ar 
" ~ ,  , ~ - -  _ _  _ _  r 2 ) 

vp~ 9 , ~ p~ r 

where Ar is the variance of the radius of the particles. Assuming that the variance Ar coincides in order of magnitude 

with the mean particle radius (Ar - r) and assuming that r - 1/~m, we obtain the following estimate for the frequencies 

of collision: 
v.~. !0 -1 cm2/sec; Ps/Og"-" lOa; T,--, 4.102 K; 

K0 "-" 5.10 -I~ cm3/sec; Ke "-" 10 -1~ cm3/sec. 

The above estimates show that at a large enough number density n for particles with a mean radius of about 1 ffm, 

it is necessary to take into account collisions that occur as a result of both Brownian and gravity-induced ordered 

motion. 

However, it is of interest to note that because of the sharp dependence of the collision frequency Kg on the 

particle size (Kg - r4; Ar - r), gravitational coagulation becomes predominant already for particles with a radius 

3 fire. In contrast to Kg, the Brownian coagulation frequency K b is independent of the particle radius. 

Comparing the mean time between collisions of particles ( - (Kn) -1) and the time of removal of particles from 

the containment Vdep, it is possible to estimate the concentration of particles n starting from which the collisions 

between particles substantially influence the function of the size distribution of the particles 

1 N 1 = 2 . 1 0 ' ,  ( cm-3) .  
tt ~ It* -- klrdep 5. i0 -1~ 10 5 

Thus, already at a comparatively small number density of the particles n - 10 4 particles/cm 3, Brownian 

coagulation leads to a considerable evolution of the function n(r). At a concentration ofparticles n >> n ,  the mean 

time between their collisions turns out to be much smaller than the time of deposition of particles on the containment 

walls. 

4. Thermophoresis. In the presence of a temperature gradient in the containment atmosphere, the aerosol 

particles experience the action of a force directed against the temperature gradient. When the size of the particles 

greatly exceeds the free path length of the surrounding gas molecules and, consequently, the continuous-medium 

model can be employed, the gas velocity is equal in the order of magnitude to 

1 OT 1 
U T F  ~ %" T Ox ,] ' 

where the quantity I-,r - (1/T.  0T/0x )-1 defines the characteristic dimension of temperature change. Substituting 

Eq. (2) into the equation for the Stokes force acting on a Jarticle in a gas stream, we obtain the following estimate 

for the thermophoresis force: 

FTF ,'-" 6~,v~pr 

For the characteristic values of the quantities 

1 OT ) .  
T Ox 

v"O ' Icm2/sec  and L r N (  IT 07" 10m 

the rate of deposition of aerosols under the action of thermophoresis forces amounts to UTF - 10 -4 cm/sec. This, as 

is seen from the above estimates, is much smaller than the rate of gravitational deposition for particles with radius r 

> 0.1 ffm and the rate of diffusional deposition for particles with radius r < 5 ffm. Thus, in the most important region 

of the parameters in practice r - 0.1-50/~m the deposition of particles due to the phenomenon of thermophoresis is 

negligibly small. 
5. Qualitative Analysis of Particle-Laden Gas Flows. In the case where large-scale motions of gas arise in 

the containment under the action of natural convection, it is necessary to self-consistently describe the gasdynamics 
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of the vapor-gas mixture and the motion of suspended particles [2-5 ]. The relative volume or mass of the suspended 

particles can be conveniently characterized by the volumetric fraction and the volumetric density, i.e., by the density 

per unit volume of the mixture. The ratio of the volumetric density of particles to the volumetric density of gas, which 

represents the relative concentration of panicles, is equal to the ratio of the mass of the particles to the mass of the 

gas phase. For a containment atmosphere containing suspended panicles with mean radius rm - 1/zm, a relative 

concentration of the particles equal to unity corresponds to the number density of the aerosol 

n* = pe/(4/3r~r39s) ,-~ 3.10 8 (cm-3)~ 

In this case the volumetric fraction of the particles amounts to a b o u t  10 -3, whereas the volumetric fraction of the gas 

phase is equal to about 0.999. It is customary to assume that under these conditions the volumetric density of air is 

equal to its true density. 
It should be borne in mind that for calculating the volumetric density it is necessary to carry out averaging 

over the volume. A volume involving about 104 molecules ensures a variation in density of less than 1%. For a gas 

under normal conditions, this volume is equal to about 0.1/~m 3 [3]. At a relative concentration of the suspended 

panicles equal to unity, a side of a cube containing 104 particles is determined by the condition 

0 ,  ) l / s  L/ (2r ) , - - , [  P2 1 ~ 10 ~. 
\ Pe 

Thus, the dimension of the region over which the averaging should be performed when introducing the 

volumetric density of the panicles amounts to L ~ 10 2 ktm at a mean radius of the suspended particles equal to 1/~m. 

When analyzing the behavior of an aerosol in the containment, this dimension (L) is much smaller than the charac- 

teristic dimensions of the flow and it can be considered as a point (which, as a rule, cannot be clone when analyzing 

Venturi-pipe-based filters). 
We also give an estimate of the number density of an aerosol corresponding to a dense set of panicles. In a 

gas flow with a nondense set of panicles their motion is determined by aerodynamic forces. In a gas flow with a dense 

set the motion of the particles is governed by their collisions. The difference in the description of flows with dense 

and nondense sets of particles is qualitatively established with the aid of the parameter ~0 = ~a]rc, where ra is the time 

of aerodynamic relaxation; ~c is the time between collisions of panicles. The frequency of collisions between panicles 

depends on the concentration and is equal in order of magnitude to 

1 
"co ~-" 1% + &,' , N  

v9e when r/~- 1 /~m 

k T n  (gravitational coagulation) 

9p~ v r w h e n r ~ l  /~m 

2p, gnr" Ar (Brownian coagulation) 

The aerodynamic-relaxation time, which is defined as the time required for a resting panicle to attain a 

velocity of the order of 0.5-0.7 of the flow velocity, can be estimated similarly to the time of establishment (see Eq. 
(1)). The equation of motion of a spherical particle exposed to the action of the force of aerodynamic resistance has 

the form 

4 ~r 2 ztr2U = c pU 2, 
3 2 

where c = 24/Re + 4/(Re) 1/2 + 0.4; Re = r W / v  is the Reynolds number. 
Since the carrying-phase velocity U N 10-30 cm/sec, for panicles with a characteristic dimension of about 1 

/~m the Reynolds number Re << 1, and the formula for the aerodynamic-drag force goes over into the well-known 

expression for the resistance force in the Stokes approximation. In this case the aerodynamic-relaxation time 

coincides with the time of constant-velocity establishment in gravitational sedimentation 

2 p,~ r ~ 
~ a ~ . ~ _  . . . . . .  

9 9g v 
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Using the above-given expressions for the aerodynamic-relaxation time and for the time between collisions, we obtain 

for the parameter 7) the following estimate in order of magnitude: 

[ ( 9" i'2 gr~tt " w h e n r ~ . l  
~--~-~ / ~,2 'Ar 

/~m, 
/ 

~1~ , ~ ,  I 

Ps w h e n r ~ l  /~m. 
gr 2 kTtz 

9z v vpz 

Thus, if ~p < 1, there is ample time for a particle to acquire a velocity comparable with the carrying-phase 

velocity, and its motion is governed by aerodynamic forces. 

This condition characterizes motion with a nondense set of particles. On the other hand, when ~p > 1, the 

particle does not succeed in being involved in the flow in the time between collisions, and its motion is governed by 
collisions with other particles. Such motion is typical for a gas with a dense set of particles. 

For a containment atmosphere with suspended particles the condition ~p = 1 is attained when the density of 

the particles is equal to 

n r  P'zl2 v2 r ( r ~ , l  /~m). 
\ p,, / g r  6 A r  

For the characteristic values v -10 -1 cm2/sec, Pg/Ps -10-3,  g - ] 0  3 cm/sec 2, r -10 -4 cm, Ar ~r, the 

density of the particles amounts to n - 10 -14 cm -3. 

Analysis of the evolution of a severe accident at an EPS shows that in all the scenarios of the accident the 

number density of aerosols does not exceed values of about 1014 and, consequently, the set of particles is not dense. 

In a nondense set of particles the information is transferred from particle to particle only along the trajectory 

of motion (in a dense set it is transferred by pressure waves, i.e., due to the interaction of molecules). This specific 

feature leads to a parabolic character of the equations that describe a nondense set of particles. 

An important parameter that characterizes the motion of suspended particles in a gas flow is the Stokes 

number, defined as the ratio of the time of aerodynamic relaxation T a to the characteristic time of flow rs: Sk = V:a/Z s. 
As already noted, the characteristic velocity of a gas mixture in a containment does not exceed values of 

about 10-30 cm/sec. In this case we may consider that the velocities of the particles and of the carrying phase coincide, 

and the flow can be regarded as the flow of a single-phase medium with sources. 

The above analysis has demonstrated that suspended particles in the containment atmosphere form a 

nondense set, whereas their relative concentration does not exceed a value of the order of unity in a number of 

practically important cases. In this case, as already noted, the presence of particles does not change the gas velocity 

and temperature fields, and the vapor-gas mixture dynamics can be described in the approximation of a one-sided 
effect. 

To describe the propagation and deposition of particles in a gas flow, an aerosol equation can be used 

extended to the case of nonuniform distribution of particles. Introducing into consideration the concentration of 

particles n(r, R, t) of size r at a fixed point of space R at time t, it is possible to obtain the following equation for 

the function n(r, R, t): 

On (r, R, l) = S (r, R, l) --- div [(U -+- Us) n] -F- V (Dvn) %- 
Ot 

r](2)l/3 
-t- .I I~((r'~ r ' 3 ) l / 3 " r ' ) n ( (  r3 #3)1/3, R, l )n(r ' ,  t) L r ~ 

- -  - -  dr --- (3) 
o (r~ - -  r'~)2/3 

f~ 

- -  11 ( ( r ,  r ')  t~ (r' ,  I~, t) dr '  + dr 0,~ (r, R, t) 
b dt dr 
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where Us is the velocity of particle motion under the force of gravity; U is the gas velocity. Under homogeneous 
thermodynamic conditions in the containment, in the absence of gas motion and with uniform distribution of aerosol, 

Eq. (3) can be integrated over the volume and can be reduced to the point model equation. 

The simultaneous solution of the generalized aerosol equation and the gasdynamic equation for a vapor-gas 
mixture allows a self-consistent description of the motion of particles suspended in a gas flow. Boundary conditions 
for diverse physical situations are given in the well-known review [6 ]. 

When carrying out numerical investigation of the propagation and sedimentation of aerosols, we can solve 
Eq. (3) by the method of trial functions. This method allows one to reduce integrodifferential equation (3) to a system 

of three interrelated parabolic equations for the mean radius and the variance and mean concentration of the particles. 

Such an approach considerably shortens the time of calculations both when the point model is used and when the 
equations of gasdynamics are solved simultaneously with the generalized aerosol equation. 

Conclusion. The use of the approximation of the point model [1 ] turns out to be inapplicable for describing 
the motion of aerosols under large-scale convection conditions, which lead to a noticeable redistribution of the 

particles between different parts of the containment. In the case of severe accidents at an EPS the number density 

of the aerosol corresponds to conditions under which the set of suspended particles is not dense and the Stokes 

number, which an important parameter characterizing the flow of a gas with particles, is, as a rule, much smaller 

than unity. For modeling such flows the literature suggests separate-trajectory methods within the scope of which 

the motion of the gas is described in Euler coordinates by a system of gasdynamic equations with source terms, and 

the motion of the particles is described in Lagrange coordinates, where the time of particle escape from the source is 

used as one coordinate. 

The mathematical model suggested in the present work is based on the one-sided-action approximation. This 
allows one to self-consistently describe the motion of a gas and of particles suspended in it in the case of a small 

relative concentration of them. To describe the processes of propagation and deposition of aerosols the "generalized" 

aerosol equation is used. Just as in the case of the point model, it is suggested to use the method of trial functions to 

investigate the behavior of aerosols in a gas flow. 

N O T A T I O N  

n, concentration of a particle; r, radius of a particle; U, particle velocity; A, surface area; Ps, density of a 
solid particle; pg, density of a gas; z, time; g, free fall acceleration; D, coefficient of molecular diffusion; 5(1, boundary 

layer dimension; k, Boltzmann constant; T, surrounding-gas temperature; B, particle mobility; v, kinematic viscosity; 

S(r, t), source of aerosols; ~p, parameter characterizing the density of a set of particles; Sk, Stokes number. 
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